8 Constructions of Lines and Angles

An important part of studying geometry is learning how to construct certain basic geometric figures. Some of the figures you can construct are line segments, angles, parallel lines, and perpendicular lines. Some of the tools you may use are a compass and a straightedge.

EXAMPLE A Construct a line segment that is congruent to $\overline{A B}$.

1
Using your straightedge, draw a ray that is longer than $\overline{A B}$. Label the endpoint as point C.

Place the compass point on point A. Place the pencil tip on point B. Then draw a curve.

3
Without adjusting the compass span,

place the compass point on point C.
Draw a curve through the ray.

EXAMPLE B Construct an angle that is congruent to $\angle B$.

1
Using a straightedge, draw a ray. Label the endpoint as point E.

Place the compass point on point C and the pencil tip on point A. Draw a curve through point A. Then, without changing the compass span, place the compass point on point F. Draw a curve that intersects the curve you drew earlier. Label the point where the two curves intersect as point D.

Place the compass point on point B and draw a curve. Label the points of intersection A and C. Then, without changing the compass span, place the compass point on point E. Draw a curve through the ray. Be sure that the curve extends well above the ray. Label the point of intersection as point F.

$\angle E$ is congruent to $\angle B$.

How could you construct an angle with twice the measure of $\angle B$?

EXAMPLE C Construct a line that bisects $\overline{X Y}$.

1
Place the compass point on point X.
Adjust the compass span so that it is more than half the length of $X Y$.
Draw a curve that intersects $\overline{X Y}$.

Use a straightedge to draw a line through points A and B. Label the intersection of $\overline{X Y}$ and $\overleftrightarrow{A B}$ as point M.

Point M is the midpoint of $\overline{X Y}$, and $\overleftrightarrow{A B}$ bisects $\overline{X Y}$.

EXAMPLE D Construct the bisector of $\angle D E F$.

1
Place the compass point on the vertex of the angle, point E. Draw a curve that intersects both $\overrightarrow{E D}$ and $\overrightarrow{E F}$.

3
Use the straightedge to draw a ray from point E through point G.

Place the compass point at the intersection of the curve and $\overrightarrow{E D}$. Draw a small curve inside the angle. Without changing the compass span, place the compass point at the intersection of the first curve and $\overrightarrow{E F}$. Draw another small curve inside the angle so that it intersects the small curve you drew earlier. Label the intersection of the curves as point G.

Ray $E G$ is the angle bisector of $\angle D E F$.

On a separate sheet of paper, draw a line segment and construct its bisector. Then bisect one of the angles formed by the line segment and its bisector.

EXAMPLE C Construct a perpendicular line from a point on a line.

1
Draw a line. Then draw point A on the line.

Place the compass point on point A. Set the compass span to any width. Draw a curve that intersects the line to the left of point A. Label the point of intersection as point B. Without adjusting the compass span, draw another curve to the right of point A. Label the point of intersection as point C.
Place the compass on point B. Set the compass span to any width greater than the length of $\overline{A B}$. Draw a curve above point A. Without adjusting the compass span, place the compass point on point C, then draw a curve that intersects the arc you just drew. Label the point of intersection as point D.

4
Use your straightedge to draw a line that connects points A and D.

$\overleftrightarrow{A D}$ is perpendicular to $\overleftrightarrow{B C}$ at point A.

How could you construct a perpendicular line from point B ?

EXAMPLE F Construct a perpendicular line from a point off a line.

1
Draw a line. Then draw point E above the line.

- E

2
Place the compass point on point E. Set the compass span to a width greater than the distance from point E to the line. Draw a curve that intersects the line to the left of point E. Label the point of intersection as point F. Without adjusting the compass span, draw another curve that intersects the line to the right of point E. Label the point of intersection as point G.

Place the compass point on point F. Without adjusting the compass span, draw a curve below the line. Now place the compass point on point G. Then again without adjusting the compass span, draw a curve that intersects the curve below the line. Label the point of intersection as point H.

4
Use a straightedge to draw a line connecting points E and H.

In this example, if point E were below the original line, how would that change the process you use to construct a $\overleftrightarrow{E H}$ is perpendicular to $\overleftrightarrow{F G}$. perpendicular line from point E ?

EXAMPLE G In Example C, you constructed $\overleftrightarrow{A B}$, the bisector of $\overline{X Y}$. Prove that $\overleftrightarrow{A B}$ is perpendicular to $\overline{X Y}$.

1
Draw triangles $A M X$ and $A M Y$. Use the SSS Postulate to prove the triangles are congruent.

Draw segments $A X$ and $A Y$ to form triangles $A M X$ and $A M Y$.

Use the relationship between corresponding sides of the triangles to show that $\triangle A M X \cong \triangle A M Y$.

The two triangles share side $\overline{A M}$.
$\overline{X M} \cong \overline{Y M}$ because $\overleftrightarrow{A B}$ bisects $\overline{X Y}$ at point M.
$\overline{A X} \cong \overline{A Y}$ because these distances were drawn with the same compass span.

So, $\triangle A M X \cong \triangle A M Y$ by the SSS Postulate.

Does a line have a perpendicular bisector?

EXAMPLEH Construct a line parallel to $\overleftrightarrow{G H}$ through point J.

1
Use a straightedge to draw $\overleftrightarrow{G J}$. Place the compass point on point G. Draw a small curve that intersects $\overleftrightarrow{G H}$ and $\overleftrightarrow{G j}$. Label the points of intersection as points K and L. Then, without adjusting the compass span, place the compass point on point J. Draw a curve that intersects $\overleftrightarrow{G J}$ above point J. Label that point of intersection as point M.

Use a straightedge to draw a line through points J and N.

Line JN is parallel to $\overleftrightarrow{G H}$.
How does the construction above relate to Example B, in which you copied an angle?

Practice

1. Construct a line segment congruent to $\overline{L M}$. Label the new segment $\overline{N P}$.

2. Construct the bisector of $\angle N$. Label the bisector $\overrightarrow{N Q}$.

3. Construct a line perpendicular to $\overleftrightarrow{Q P}$ at point P. Label the line $\overleftrightarrow{R S}$.

4. Construct a line parallel to $\overleftrightarrow{T V}$. Label the line $\overleftrightarrow{W Z}$.

5. Bisect segment $L M$. Label the bisector $\overleftrightarrow{A B}$. Label the point where $\overleftrightarrow{A B}$ intersects $\overline{L M}$ as point N.

6. THINK CRITICALIY Think about the steps used to construct an angle congruent to a given angle.

How can you use the steps for copying an angle and the triangle congruence postulates and theorems to prove that the angles are congruent?
\qquad
\qquad
\qquad
\qquad
\qquad

